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ABSTRACT 

A program has been undertaken to examine the seismic srurce 

in the near- and far-fields.     Near field accelerogram spectra have been ana- 

lyzed for corner frequency,   seismic moment,   and stress drop.     For the Bear 

Valley earthquake of June 22.   1973,   a stress drop (Aa) of 300 oars was ob- 

tained using Rrune's source theory.    Our data sample,   though,   was insuffic- 

ient to determine any empirical relationship between corner frequency and 

local magnitude and its association with stress drop. 

In our examination of far-field source spectral characteristics, 

de-multipathing procedures have been implemented on the PDP-IS interactive 

graphics  system      Three-dimensional computer plots of double couple source 

spectra have been produced,   and are being used in an exhaustive   malysis of 

far-fic:d spectral characteristics as a function of source configuration.     Fin- 

ally,   we briefly examined two discriminants,   LQ/LR and U^ m^    For a 

double couple source,   LQ/LR amplitudes at  30 seconds period were found to 

be greater than 1  for depths of S,   30,   and 50 kilometers.     The second discrinr 

inant,   I 1   - m  ,  was studied with the objective of reducing the scatter of the 

earthquake population by minimizing the affect of the  source mechanism radia- 

tion pattern and by obtaining the M^ value at the  same period for all events 

and all components.     Neither of these approaches  reduced the  scatter. 
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SECTION I 

ANALYSIS OF NEAP  FIELD DATA 

A. INTRODUCTION 

In our past studies of near field data (Turnbuil and Battis,   1974), 

several events have been analyzed using the Haskell's (19^9) moving disloca- 

tion source to fit waveforms in the time domain.    Software has also been de- 

veloped for a Cagnaird dislocation source,   and it is now being applied to these 

previously analyzed events.     For the past several months,   though,   we have 

examined the spectra of these events in an attempt to infer source character- 

istics.    In Subsection B,   a brief description of the metho'.' of analysis is given. 

The results of the spectral analysis is given iw cabsection C.    Finally,   in 

Subsection D,   these results are summarized and the direction of our future 

research is given. 

B. METHOD OF ANALYSIS 

To obtain the spectra required for this investigation,   the 

FORTRAN program CORPLT was written.     Using accelerogram data placed 

on tapes in a standardized format (Tsai and Patton,   1972),   this program in- 

itially decimates and determines a baseline.     A high pass filter is then ap- 
N 

plied and the autocorrelation of the accelerogram is calculated.     A (cosine) 

taper is applied to this autocorrelation function which in turn acts as a low 

pass filter.     The acceleration amplitude spectrum is then calculated by Four- 

ier analysis of the autocorrelation spectrum.     Two sequential divisions of the 

acceleration amplitude spectrum by   Zrri   provide the velocity and displace- 

ment amplitude spectrum,   and the normalized energy density spectra of each 

1-1 
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are plotted.    In addition,   an option to enable comparison of spectra,   such 

signal-to-noise spectrum,   ;s available. 

as 

Once the spectra is obtained,   the corner frequency (f  )  and the 
o 

low frequency levels (flJ were evaluated.     An attempt was made to pick these 

values ir a consistent manner.     The corner frequency was chosen as the ab- 

solute peak amplitude of the velocity spectrum which lies at a higher frequency 

than the first local minima above the high-pass filter cut off frequency.   From 

the displacement spectrum,   a value was obtained for the low frequency spec- 

tral level.     This was accomplished by determining an average spectral value 

from Len frequency values preceeding the corner frequency (never going be- 

low the high-pass filter corner frequency).    The results of these evaluations 

are given in the following paragraphs. 

C. ANALYSIS OF NEAR FIELD SPECTRA 

An example of the spectra obtained from the program CORPLT 

is shown in Figures I-la,   I-lb,   and I-lc.  where the acceleration,  velocity, 

and displacement spectra are shown,   respectively,  of the signal and noise of 

the ßear Valley earthqi-.ake of June 22,   1973.     The ratio of the signal plus 

noise amplitude to the noise amplitude at the corner frequency (from the dis- 

placement spectrum) for this event is approximately 12 (the cut off of the 

high-pass filter occurs at 0. 6 Hz).     The results of the analysis of this spec- 

tra is given in Table 1-1.   along with the analysis of several other events. 

Thirty-five accelerograms from eighteen different earthquakes 

have been analyzed.     Thirty-one of these records were compiled by the Earth- 

quake Engineering Research Laboratory of the California Institute of Tech- 

nology.     These t -ents are mostly large magnitude with a local magnitude (M   ) 

in the range fro» 4. 5 to 7. 7.     Five of the seventeen events compiled by Cal 

Tech were recorded at more than one station.    The remaining twelve events 

include six events of the San Fernando aftershock series  recorded only at 

1-2 
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Pacoima Dan.     The Bear Vail.y event of June 22.   1973.   was obtained from 

the University of Califcrnia accelerometer array at Pear Valley.   California. 

This low magnitude .vent (M^ 4.0) was  recorded by four station,  re^  .vely 

near the source {- 10 km).     From the previously described spectra,   (and us- 

ing only stations 7 and 8 because of their clear -vavefo.ms).  we cbtained a 

corner frequency (M of approximately 2.2 H« and a low fr.quen.y spectral 

level (fl   ) of about o"  12 cm-ser .    Using the theory of Brune (ITC) on these 

data leads to a seismic moment (M^ of about 1.4 K lO"3 dyne-cm and a 

stress drop U") of abojl  300 bars. 

The significance of this latter number is not clear.    Discus- 

sions conducted at the last Near Field Study group meeting (November  19 and 

ZQ,   1974 at Ol   lech) produced varied opinions which judged this stress drop 

to be either acceptable or too high a value.     Using the Brune theory on the 

other seventeen events produced even more controversial results,   with sev- 

eral events yielding stress drops in the kilobar range (i. e. .   Kern County - 

4.4 kbar).     A decision on how this number fiom Brune's theory can be com- 

pared to the breaking strength of materials in the labo   .tory has not been 

reached. 

Finally,   an attempt was made to determine a correlation be- 

tween local magnitude (Mj and corner frequency (M using the events listed 

in Table 1-1.     For events with a local magnitude greater than 5.5.   the cor- 

ner frequency tends to decrease in a linear fashion with increasing local 

magnitude (see Figure 1-2).     Events with magnitudes less than 5. 5 follow no 

particular pattern but.   of course,  our data sample is limited.    These latter 

events are characterised by small fault area (~ 1 kn/) and relatively high 

stress drop (A9    >  200 bars).    Obviously,   the analysis of more events with 

local magnitudes (MJ less than 5. 5 is needed for the identification of any 

trends in this magnitude range. 
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D. CONCLUSIONS 

The analysis of near-field accelerogram spectra has produced 

little in the way of signifirant results,   either because of the lack of data,   ur 

the inadequacy of the theory to explain the observations.     The next several 

months will be spent analyzing several events in conjunction with other in- 

vestigators of the Near Field Study Group.    Both Cal Tech and University of 

California acceleration data will be used with long-period data from several 

sets of instrumentation.     From both spectral ana'vsis and waveform match- 

ing procedures using the Cagnaird ard Haskell dislocation sources,   it is 

hoped conclusions can be reached on t.ie    relationship of corner frequency to 

local magnitude and its association with stress drop. 
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SECTION II 

FAI^ FIELD SOURCE STUDIES 

A. INTRODUCTION 

For  the past several months,   the examination of far-field 

spectra for source characteristics has been conducted along several lines of 

investigation.    The implementation of the de-multipathing procedures pre- 

viously described by Turnbull,   et al. ,   (1974),  on the PDP-15 interactive gra- 

phics system,   is described in Subsection B.    Software has also been written 

for three-dimensional computer plots of double-couple source spectra,   and 

examples of these displays is given in Subsection C.    This plot is quite ef- 

fective in showing the spectral variation as a function of the source paramet- 

ers (depth,   strike,  dip,   slip),   their relative importance to the spectral vari- 

ation,   and the existence of spectral holes or other identifying characteristics 

of particular source crnClgurations.     In Subsection D,   we present a result 

from the study o*" radiation pattern invariance as a function of source para- 

meters;  in particular,   theoretical LQ/LR ratios for earthquakes are given 

for averaged azimuthal increments.     Also,   an attempt  to reduce the scatter 

in M   -  m    plots using the relative invariance to the total energy in the sur- 
s       b 

face-wave train is discussed.     Finally in Subsection E,   we summarize our 

results and discuss future plans, 

B, IMPLEN ENTATION OF INTERACTIVE GRAPHICS FOR  DE- 
MULTIPATHING OF SURFACE-WAVE SPECTRA 

A procedure for de-multipathing surface-wave spectra,   as 

shown in Figures II-l  through II-4,   has been implemented on the PDP-1'.S in- 

teractive graphics system by Ringdal and Shaub (1974).     As described by 

11-1 
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FIGURE 11-1 

EXAMPLE OF AN ORIGINAL EVENT  WAVEFORM 
(TOP TRACE),   FILTERED BY A NARROWBAND FILTER 

(MIDDLE TRAGE) AND BY A LINEAR CHIRP 
FILTER (BOTTOM TRAGE) 
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TumbuU.   et al. .   (1974).   a reasonable measure of success has been achieved 

using a suite of narrowband filters over the 10 to 60 second period range to 

eliminate nudtipath effects from the surface-wave spectra.     This procedure, 

though,   using normal computer analysis,   is quite time consuming.     With 

future research including large suites of events from particular areas of m- 

te.est.   the nee. tor an automated approach was quite evident.     These figures 

show photographs of the displays of the major ^teps in this procedure,   svh.ch 

are summarized as follows: 

# Figure 11-1 displays th3 ordinal wavetrain (either Rayleigh or 

Love),   the event parameters (location,   etc.).  the result of a 

narrowband filter,   and the application of a linear chirp filter 

(used for detection purposes).     This display is used to pick the 

group velocity window of the surface-wave component under 

consideration. 

Figure n-2 shows a set of narrowband filter output traces for 

the chosen group velocity window.     We see that,   for the fre- 

quencies examined,   little multipathing exists,   as shown by the 

dominant group velocity wave packets.     Multipathing severely 

affects the spectra when,   for the same frequency,   two or more 

group velocity wave packets exist with comparable amplitudes. 

9 In Figure 11-3,   a set of envelope functions (calculated using 

Hubert Transforms) are displayed for the set of narrowband 

filter traces  shown in Figure II-2.     These envelopes facilitate 

the picking of the maximum amplitudes of the wave packets at 

each frequency,   and are indicate I by the cursor marks. 

t Finally,   in Figure II-4.   the maximum amplitude picks are 

displayed *ith standard oceanic and continental group velocity 

curves.     The table in the upper right hand corner of the dis- 

play gives the pc-riod.   amplitude,   and group velocity of each 

11-6 
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of the picks.     When a choice of a pick is made at a particular 

frequency,   the choice is boxed and noted in the table. 

This procedure will be completed when the software is written 

to produce a hard copy of the spectra resulting from the chosen group velocity 

curve.     Using this procedure,   areas of interest can be studied using spectral 

fitting techniques on de-multipathed spectra. 

C. VARIATION OF DOUBLE COUPLE SOURCE SPECTRA AS A 
FUNCTION OF SOURCE PARAMETERS 

Using a normal Gutenburg-Bullen earth structure, Rayleigh 

and Love wave spectra for a double couple source have been formulated in 

three-dimensional displays. The displays are helpful in examining source 

spectral variation as a function of the source parameters (depth, strike, dip, 

slip), and the existence of spectral holes or other identifying characteristics 

of a particular source configuration. Four examples ot these displays a-e 

shown in Figures II-5 to II-8. We can summarize their major features as 

follows: 

• The variation of double couple Rayleigh and Love wave spectra 

with depth and dip for a strike-slip fault is shown in Figures 

Il-Sa,   Il-Sb.     Both the Rayleigh and Love wave spectra are 

fairly smooth except for a vertical fauJt (8 (dip) = 90  ),  where 

a hole appears in the Rayleigh spectra. 

• The variation of dc<;hle couple Rayleigh and Love wave spectra 

with depth and sttike for a vertical strike-slip fault is shown 

in Figures II-6a,   Il-bb,     The major features in these spectra 

are the hole in the  Rayleigh wave spectra as in the previous 

case,   and the consistency of the nodes in the spectra as a func- 

tion of depth.     For this particular configuration,  we see that 

11-7 
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FIGURE I]-Sa 

VARIATION OF DOUBLE COUPLE RAYLEIGII  WAVE SPECTRA 
WITH DEPTH AND DIP FOR  A STRIKE-SLIP FAULT 
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FIGURE U-Sb 

VARIATION OF DOUBLE COUPLE LOVE  WAVE SPECTRA WITH 
DEPTH AND DIP FOR  A STRIKE-SLIP FAULT 
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FIGURE II-fta 

VARIATION OF DOUBLE COUPLE RAYLEIGI1 WAVE SPECTRA  \\'\T}\ 
DEPTH  AND STRIKE FOR  A VERTICAL STRIKE-SLIP FAULT 
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FIGURE 11-61) 

VARIATION OF DOUBLE COUPLE  LOVE  WAVE SPECTRA WITH DEPTH 
AND STRIKE FOR A VERTICAL STRIKE-SLIP FAULT 
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these nodes do not change azimuth with a change in depth (this 

would not be true in general). 

• Figures ll-7a,   ll-7b show the variation of Rayleigh and Love 

wave spectra with depth and slip for a vertical fault,   while 

Figures Il-Sa,   II-8b show the same variation for a moderately 

dipping (60   ) fault.     For the Rayleigh wave spectra,   we see 

that the hole exists for the same slip angle (0   )   it all depths 

for a vertical fault,   while for the moderately dipping fault the 

same situation exists,   but for a different slip angle (-60°).   Tl.e 

Love wave spectra is quite smooth for both cases,   except a 

lower spectral level exists at all depths for one particular slip 

angle of the moderately dipping fault. 

These plots represent the initial results of a detailed study of 

spectral variation as a function of source parameters.     Combined with pre- 

viously generated tvvo-dimensional spectral plots,   identifying chare -teris.lcs 

of source configurations and the variation of spectral level will be exhaustive- 

ly analyzed. 

D, A BRIEF EXAMINATION OF TWO FAMILIAR DISCRIMINANTS 

From the previously discussed studies of surface-wave radia- 

tion patterns and spectra,   and the work by Alexander and Turnbull (1974) on 
2 Z the invariancc of fundamental mode surface-wave energy (i. e. ,   LR   + L,Q   , 

LQ/LR) as a function of source parameters,   brief investigations have been 

conducted on two widely used discriminants of earthquakes and explosions. 

The first discriminant,   the ratio of Love wave to Rayleigh wave spectral am- 

plitude (LQ/LR),   was examined from the perspective of the possible theoretical 

variation of this  ratio for earthquakes due to variation of the source parameters. 

In Figure II-9,   the results of this examination are presented for three focal 
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FIGURE II-7a 

VARIATION OF  DOUBLE COUPLE RAYLEIGH  WAVE SPECTRA 
WITH  DEPTH AND SLIP FOR  A VERTICAL FAULT 
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FIGURE II-7b 

VARIATION OF DOUBLE COUPLE LOVE  WAVE SPECTRA WITH 
DEPTH AND SLIP FOR  A VERTICAL FAULT 
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FIGURE II-8a 

VARIATION OF DOUBLE COUPLE RAYLEIGH  WAVE SPECTRA  WITH 
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GUTENBERG-B / LOVE 
DOUBLE-COUPLE 
DIP flNGLE=        60-0 
STRIKE= D.O 
f10rtENT= 0. 10 
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40.0 50.0 

FIGURE II-8b 

VARIATION OF DOUBLE COUPJ E LOVE WAVE SPECTRA WITH 
DEPTH AND SLIP FOR  A MODERATELY DIPPING (60°) FAULT 
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depths (h = 5,   30,   SO kilometers).     The theoretical LQ/LR ratios are aver- 

aged over 11     azimmhal increments.     This increment was determined by 

averaging over successively laiger azimuthal intervals and determining if 

the average  stayed within 10% of the largest and smallest values.     Hence 

radiation pattern effects are minimized.     We see from the i\ '"re that the 

average   LQ/LR value at 30 feconds period is very close to or gi eater than 

1  for the three focal depths      This agrees with the results of Lambert,   et al. , 

(1974),   in his study of data recorded by VLPE instruments. 

The second discriminant,   M   - m, ,   was studied wit'' the ob- 
s b 

jective of reducing the scatter rf the earthquake population by minimizing the 

effect of the source mechanism radiation pattern and by obtaining the M 

valttfl at the  same period for all events and all components.    The tl ree follow- 

ing cases  illustrate our results. 

• Figures II-10a,   II-10b illustrate the case of M    measurements 
s 

obtained from one station by manual measurement directly 

from the record.    These events originated in Eurasia,   were 

recorded on all three components at NORSAR in 1972,   and con- 

sist of 1.37 earthquakes and 6 presumed explosions.     In Figure 

II-10a,   the standard deviation about the mean line for earth- 

quakes was found to be   cr = 0.279 for M    calculated in the stand- 
s 

ard manner using the vertical Rayleigh wave trace.     Next,   us- 

ing our knowledge of Rayleigh and Love wave radiation patterns, 

we then hoped to reduce the scatter in the earthquake popula- 

tion by calculating a M    using both Rayleigh and Love wave 

measurements (the modulus of the Kayleigh and Love wave am- 

plitudes) from the same data set.    By doing this,   we are es- 

sentially reducing the .adiation pattern affect on the measure- 

ment (minimizing the affect of nodes and lobal peaks of the pat- 

terns),    p'igure II-10b gives the result of this     nalysis.     No 
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FIGURE il-10( 

Msm mh FOR  EURASIAN EVENTS RECORDED AT NOR.SAR 
'(mz) -  M    CALCULATED USING BOTH RAYLEIGH 

AND LOVE  WAVE COMPONENTS 
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improvement in the reduction of scatter was observed,   with 

a standard deviation of   cr= 0. Z83. 

• Figures II-lla,   11-llb illustrate the case of M    measurements 
s 

averaged at three or more stations (VLPE) by manual measure- 

ment of 66 Eurasian earthquakes recorded during 1972 and 1973. 

By using more stations,   it was hoped to reduce radiation pattern 

effects.    In Figure 11-1 la,   a standard deviation of     a = 0, 3^4 

was obtained using an M    calculated from the vertical compon- 

ent Rayleigh wave averaged at three or more stations.     This is 

almost identical to that obtained by Lambert,   et al.   (1974) for 

M    from single stations.     Ueing an M    calculated from both the 
s s 

Rayleigh and Love waves,   we obtained a standard deviation of 

(T= 0. 368,   essentially no improvement, 

• In the final case,   using the same VLPE data set and calculating 

M    in the same ways,   we obtained our M    measurement  by us- 
s s 7 

ing a spectral estimate at 20 seconds period.     Figure II-I2a 

illustrates M    taken from vertical Rayleigh only,   with a stand- 

ard deviation of     CT= 0. 369.     Using an M    obtained from Ray- 

leigh and Love waves (Figure Il-12b) yielded a standard devia- 

tion of    (7= 0.363.     Again,   no significant improvement. 

From these three cases,   keeping in mind the limited data set, 

we can reach the following conclusions:   (1) Using bom Rayleigh and Love 

waves to calculate a M    chosen by either manual or spectral methods gives no 

improvement in the reduction of scatter about the mean value line over M 
s 

measured from the vertical Rayleigh; (2) Using three or more VLPE stations 

to average radiation pattern effects produced no reduction in scatter.     At this 

point,   it is felt that the scatter about the mean value line can only be  reduced 

by accounting for path effects (i.e.,   multipathing).    Future studies will deter- 

mine if,   in fact,   this can be accomplished. 
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E. CONCLUSIONS 

Several tasks have Leen initiated in our study of far-field spec- 

tra for sourer characteristics.     De-mu'ripathing procedures have been im- 

plemented on the PDP-15 interactive graphics system.     This software will 

facilitate the analysis of large suites of events from regions of interest. 

1 hree-dimensional computer plots of double rouple source spectra hav.   been 

produced,   and will be used in an exhaustive analysis of far-field spectral 

characteristics as a function of source configuration.     Particular interest will 

be directed toward the study of spectral holes,   spectral levels,   and spectral 

nodes as a function of the source parameters. 

Finally,   we briefly discussed two discriminants,   LQ/ LR am- 

plitude ratios and M   - m, ,     It v as found that theoretical LQ/ LR ratios for 1 s b 
earthquakes at 30 seconds period was greater than 1 for focal depths of h =5, 

^0.   and "SO kilometers.    For the M  - m,   discriminant,   we attempted to reduce 
s b 

the scatter about the mean value line of earthquakes by making a uniform set 

of measurements (all at T ■ 20 sec),   and by minimizing radiation pattern ef- 

fects (usin<4 both Rayleigh and Love wave amplitudes to calculate M  ,   and ob- 

taining M    from several stations).     Neither of these approaches reduced the 

scatter,   leading us to the conclusion that path effects (multipathing) could 

have a significant effect on M    measurements.     Future studies will be con- 
s 

cerned with this problem. 
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